
873

Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter  30

DOI: 10.4018/978-1-5225-3142-5.ch030

ABSTRACT

Modern instruments have the capacity to generate and store enormous volumes of data and the challenges 
involved in processing, analyzing and visualizing this data are well recognized. The field of Chemometrics 
(a subspecialty of Analytical Chemistry) grew out of efforts to develop a toolbox of statistical and com-
puter applications for data processing and analysis. This chapter will discuss key concepts of Big Data 
Analytics within the context of Analytical Chemistry. The chapter will devote particular emphasis on 
preprocessing techniques, statistical and Machine Learning methodology for data mining and analysis, 
tools for big data visualization and state-of-the-art applications for data storage. Various statistical 
techniques used for the analysis of Big Data in Chemometrics are introduced. This chapter also gives an 
overview of computational tools for Big Data Analytics for Analytical Chemistry. The chapter concludes 
with the discussion of latest platforms and programming tools for Big Data storage like Hadoop, Apache 
Hive, Spark, Google Bigtable, and more.
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ANALYTICAL CHEMISTRY AND CHEMOMETRICS

Over the years, various Chemometric tools have emerged and have been utilized as data evaluation instru-
ments generated by various hyphenated analytical techniques including their application since its advent 
today (Kumar, Bansal, Sarma & Rawal, 2014). Although its primary applications are geared toward Mul-
ticomponent Analysis, its applications have even been extended to the area of genetic epidemiology and 
Bioinformatics in the recent years (Dumancas, 2012; Dumancas et. al., 2014; Dumancas et. al., 2015).

The advances that are now visible in Process Analytical Technology (PAT) in Chemometrics can 
be attributed to the rapid development of both analytical instrumentation and mathematical methods 
involved in multivariate data analysis (Bogomolov, 2011; Dubrovkin, 2014; Kessler, 2013; Pomerantsev 
& Rodionova, 2012). Specifically, the rapid growth of a wide multitude of novel analytical methods 
and the continuous expansion in the area of their applications are the two driving forces that led to the 
success of PAT (Dubrovkin, 2014).

With the vast array of information emanating from various analytical instruments comes the challenge 
of processing these data in a rapid fashion. Thus, the process of Data Fusion, a subclass of Chemometrics 
is now considered an important topic (Esteban et. al., 2005; Ovalles & Rechsteiner, Jr., 2015). Data Fu-
sion simply refers to the integration of data and knowledge from several sources (e.g. analytical instru-
ments) (Castanedo, 2013). Many other definitions for data fusion exist in the literature. It is defined by 
the Joint Directors of Laboratories (JDL) as a “multi-level, multifaceted process handling the automatic 
detection, association, correlation, estimation, and combination of data and information from several 
sources” (Steinberg et. al., 1999). The corresponding informational models from data fusion should 
simulate extremely complex problems by fitting to the massive amount of empirical semi-structured 
and unstructured data (Isaeva et. al., 2012). Consequently, the algorithmic support and the interface of a 
computerized analytical system (often with limited computer resources) should be adjustable to systems 
with features of new types. Such challenge arising from analytical information management led to several 
perspective solutions such as the concept of Cloud Computing all of which is part of the development 
of “Big Data Approach” (BDA) (Dubrovkin, 2014).

In this chapter, the major aspects of Big Data utilization and processing in Analytical Chemistry 
(Chemometrics) will be discussed. Specifically, some commonly used algorithmic and instrumental 
techniques and aspects of computerized analytical systems will be discussed.

APPLICATIONS OF CHEMOMETRICS

Chemometrics is a fast spreading area which has many avenues of applications in both descriptive and 
predictive problems in experimental life sciences especially in Chemistry. It is considered to be a highly 
interfacial discipline employing Multivariate Statistics, Computer Science and Applied Mathematics using 
methods employed in core data analytics with the ultimate goal of addressing problems in Biochemistry, 
Medicine, Chemistry, Chemical Engineering and Biology (Khanmohammadi, 2014).

The biological and medical applications of Chemometrics encompass a wide area of expertise. Sup-
port Vector Machines (SVMs), Partial Least Squares Discriminant Analysis (PLS-DA) are widely used 
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techniques for classification purposes involving microorganisms, medical diagnosis using spectroscopy 
and metabolomics using Coupled Chromatography and Nuclear Magnetic Resonance Spectrometry 
(Brereton, 2007).

Other widely used applications of Chemometrics is in food science. Specifically near Infrared Spec-
troscopy (Near IR) is used for calibration, classification and exploratory purposes. The ultimate goal is 
for sensory analysis which links composition to products using sensory panels and PCA. (Brereton, 2007)

Over the years, industries have also been employing Chemometric statistical designs for improving 
the performance of synthetic reactions. Specifically, factors are screened that are known to influence the 
performance of a reaction as well as implementing optimization of variables (Brereton, 2007).

Chemometrics and the methods involving in it are versatile and there is a high level of abstraction 
involved in this field. This is due to the fact that the field is characterized by the use of statistical and 
mathematical methods—the multivariate methods. The algorithms and the techniques used in the pro-
cessing and evaluation of data can be implemented to various fields including Pharmacy, Food Control, 
Medicine and environmental monitoring among others (Matero, 2010; Mocák, 2012; Singh et. al., 2013). 
The number of manuscripts published involving Chemometrics has ever since increased significantly 
over the past four decades (Refer to Figure 1).

Figure 1. Number of manuscripts published over the years using the keyword “chemometric” in PubMed 
(Designed by authors, 2016)
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BIG DATA ANALYSIS IN ANALYTICAL CHEMISTRY

Definition of Big Data in the Context of Analytical Chemistry

In order to be aware of the features of Big Data within the context of Analytical Chemistry, the major 
focal points or definition of Big Data should first be discussed. Modern analytical laboratories can 
routinely generate large volumes of detailed data for complex samples. To acquire the most information 
from the data, systematic organization and reduction is needed. These data handling procedures consist 
of data collection, organization and creation of databases. Automatic instrumentation and data handling 
procedures manage these tasks of data handling. These automated procedures offer the advantages of 
speed and accuracy and therefore greatly reduce the difficulty for routine applications of Chemometrics. 
Data collection including sample extraction and analysis typically require considerable amount of time. 
Manual organization and creation of these databases greatly increase the amount of time and effort 
required to carry out the preparation for data analysis (Burgard & Kuznicki, 1990).

There are two different approaches to data handling in Chemometrics. Both of these assume the use 
of a computerized data acquisition as part of the entire instrumental system. The first one is a typical 
data acquisition and analysis configuration (Refer Figure 2). It consists of a stand-alone data instrumental 
acquisition system that requires a data transfer interface for serially uploading the data for each sample. 
This type of arrangement is relatively easy to implement but requires much user interaction to move 
data from one system to another and to organize the database for analysis. Many times, the Chemist or 
Laboratory Technician assumes the roles of the data transfer interface who is responsible for manually 
organizing, tabulating and entering the data into the computer where data analysis will occur. A better 
arrangement is when the data transfer interface is electronic and information is uploaded via a standard 
protocol to a host computer. Personal computers (PCs) and PC-based instrumental data systems are 
useful for this step since commercial database managers make it easy to manipulate large quantities of 
data. It is even possible to use the PC for the final data analysis as multivariate software packages for 
data analysis are now available for PCs (Burgard & Kuznicki, 1990).

Figure 2. Typical data acquisition and analysis configuration (Burgard & Kuznicki, 1990)



877

Visualization Tools for Big Data Analytics in Quantitative Chemical Analysis
﻿

The second type of approach involves a completely integrated system where all functions are per-
formed in the same computer (Refer Figure 3). Such an approach offers the advantages mentioned in 
the first approach to data handling in addition to supporting multiple instruments and users simultane-
ously. Multi-user Laboratory Automation Systems (LASs) can be configured for such operation. The 
vendor software provides support for the data acquisition and possibly the data management systems 
Laboratory Information Management Systems (LIMS). General purpose statistical software packages 
are available for various laboratory computer systems. Data analysis packages have been developed 
privately and integrated into the laboratory computer systems. However, the major disadvantage of this 
approach is the need for custom development and/or installation of the data reduction software (Burgard 
& Kuznicki, 1990).

Data Preprocessing

Chemometric methods are influenced by methods used for data processing. Data preprocessing is con-
sidered to be the second most important step in a Chemometric study after study definition and data 
collection (Burgard & Kuznicki, 1990). Pretreatments in Chemometrics are applied for various reasons, 
to overcome such problems as scaling differences between variables, background errors, noisy data, etc. 
It may also be necessary to reduce the total amount of data. Preprocessing simply means to put the data 
into a meaningful form for further comparisons; that is, the conversion of raw data to units or scales 
that allow direct comparison of measurements for different samples. The technique of preprocessing 
is often accomplished in three simple steps. The first step converts the data to units appropriate for the 
comparisons to be made. The second step involves the organization and creation of a database. The third 
and last step involves mathematically conditioning the data in preparation for the actual data analysis 
(Burgard & Kuznicki, 1990).

Figure 3. Ideal data acquisition and analysis environment (Burgard & Kuznicki, 1990)
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In Pattern Recognition, the commonly used methods in data preprocessing include:

1. 	 No pretreatment
2. 	 Mean-Centering where the mean of each column is subtracted from each entry in the column (usu-

ally a minimum treatment for Principal Component Analysis (PCA))
3. 	 Standardization: as well as Mean Centering wherein each entry in the column is divided by the 

column Standard Deviation. Thus, the mean of each column is zero and Standard Deviation (SD) 
= 1 (also often applied prior to PCA and methods which are not scale invariant such as Soft 
Independent Modeling by Class Analogy (SIMCA). This method is also called Autoscaling.

4. 	 Row scaling, so the rows sum to a constant total (usually 1 or 100). Row scaling is useful where 
the absolute concentration of a sample cannot be controlled.

Other methods to reduce scaling and other problems include log transforms and weighting the vari-
ables. If the amount of data is too large to be handled in the software, it can be reduced by doing PCA 
first and using the principal components in place of the original data set. All these methods affect the 
final result of pattern recognition, thus, it needs to be understood why a pretreatment should be neces-
sarily applied prior to analysis.

In the aforementioned methods involved in data preprocessing, methods (a) and (c) are done automati-
cally or are transparent to the user and are not considered to be a separate step in an analysis sequence. 
One good example is the conversion of chromatographic peak areas to parts per million which can be 
accomplished in most instrumental data systems. This might be considered as the first step in the prepro-
cessing of chemical data. Centering and scaling procedures in the third choice (c) are often considered 
to be part of a standard data reduction procedure and can be performed automatically by most software 
packages. The second choice (b), on the other hand, is typically not available in commercial software 
packages and, thus must be performed manually or by user created software or sequences. This method 
involves aligning all the data for each sample to ensure that same data points represent the same vari-
able for each sample and the entry of the data into the database should be in a form that can readily be 
accessed by using an analysis software (Burgard & Kuznicki, 1990).

DATA ANALYSIS

Regression-Based Methods

Partial Least Squares (PLS)

Partial Least Squares (PLS) regression was introduced in the early 1980s and since then has gained 
much popularity in Chemometrics (Helland, 2004). It is closely related to Principal Component Re-
gression (PCR), another Chemometric multivariate technique. However PLS differs in that it uses the 
response information during the decomposition of the X data matrix. The main idea of PLS is to get 
as much response information as possible into the first few loading vectors. Unlike PCR, PLS is a one-
stage process as PLS performs decomposition on both the X and Y matrices simultaneously. There is 
no separate regression step as in PCR. PLS, like PCR, can be performed when the predictors are highly 
correlated (collinear).
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In literature, PLS is often introduced and explained as a numerical algorithm that maximizes an 
objective function under certain constraints. The objective function is the covariance between X and Y 
scores and the constraint is usually the orthogonality of the scores (Varmuza & Filzmoser, 2009).

There are two separate PLS algorithms – PLS1 and PLS2. PLS1, or one-block PLS, is performed when 
there is one y response. PLS with several responses is called two-block PLS or PLS2. Also the vectors 
generated by PLS more closely relate to the constituents of interest than those from PCA (Helland, 2004).

As with PCR, the key to PLS is the decision on how many ‘significant’ components to include and 
the optimum number of components that can be decided from Rev2  whereRev2  is R2 for the cross-val-
idated model. However, because PLS is a nonlinear technique, the cross-validated residuals must be 
calculated by the leave-one-out technique repeating the model calculation many times.

The raw data matrix, Z is initialized by carrying out a pretreatment step (usually Mean Centering 
or Standardization) to give X. The same pretreatment is carried out on the response vector, y to give c. 
There are several different algorithms used. This version of the PLS algorithm is a non-iterative version 
(Brereton, 2003). Below, the steps involved in the PLS1 technique are given:

The scores are then given by:

X h

h

*
2∑( )

(Brereton, 2003)	 (1)

The x loadings are given by:

t X

t

' *

2∑( )
(Brereton, 2003)	 (2)

The c loadings are given by:

c t

t

' *

2∑( )
(Brereton, 2003)	 (3)

The x residuals are computed as:

X X t p
resid
= − ∗ (Brereton, 2003)	 (4)

And the new response estimate is given by:

C C t q
new
= + ∗ (Brereton, 2003)	 (5)

To get new calculated values of y, the pretreatment must be reversed (e.g. if mean-centered, add the 
mean). The c residuals can also be determined using the equation below:
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C C C
resod new
= − (Brereton, 2003)	 (6)

This is PLS with one component. Further components can be included stepwise by replacing X and 
C in equations (1) to (3) by the residuals X

resid
 and C

resid
 and recalculating.

PLS2 regression is a variant of PLS that is a generalization to several dependent variables (Hel-
land, 2004). In other words, this type of regression predicts simultaneously several dependent variables 
(Banks, House, McMorris, Arabie & Gaul, 2011). The algorithm is an extension to the PLS1 algorithm 
except that a concentration matrix C is used. If a mixture is being analyzed, for example, PLS1 can be 
applied to the concentration vector for each component, or PLS2 can be applied in one process using a 
concentration matrix C where each column is a concentration vector for each component.

Principal Component Regression (PCR)

In Ordinary Least Squares (OLS), the number of variables must be less than that of the number of samples 
(objects) and these variables cannot be highly correlated. If the variables are strongly correlated, this leads 
to a singular data matrix which cannot be inverted in the least squares process. To avoid the problem of 
collinearity, and hence the need to decide which variables to use, PCR or PLS can be used. By defini-
tion, the variables in PCR and PLS are orthogonal (uncorrelated), so collinearity is no longer an issue.

The PCR model is as follows:

y T a e= ∗ − (Brereton, 2003)	 (7)

where T is a matrix of the first ‘m’ principal component scores, a is a vector of coefficients and e is the 
error vector. This can be compared to the general linear model:

Y X b e= ∗ − (Brereton, 2003)	 (8)

where X is the original data matrix (usually auto-scaled i.e. subtract the mean and divide by the Standard 
Deviation of each column or mean-centered i.e. subtract the mean of each column)

The matrix T can be calculated by determining L, the set of eigenvectors of the matrix X XT∗

T X L= ∗ (Brereton, 2003)	 (9)

y T a e X L a e= ∗ + = ∗ +[ ] * (Brereton, 2003)	 (10)

Hence, the coefficients for the PCR model are given by b L a= ∗  and a is determined from the scores 
using OLS as given by:

a T T T yT T= ∗ ∗ ∗−( ) 1 (Brereton, 2003)	 (11)
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This is essentially the method used to determine b in OLS. However, the matrix T has orthogonal 
columns so the problem of collinearity is avoided.

To calculate the predicted responses from the original (unscaled) data, the coefficients can be de-
termined by dividing the elements of b by the Standard Deviation of the corresponding column of X.

If the whole score matrix is used, the results will be the same as OLS. However, the secret to suc-
cessful PCR is using enough ‘significant’ eigenvectors in L (and corresponding columns of T) to get a 
successful model but screen out noise. If the eigenvalues (and corresponding eigenvectors) of X XT ∗  
are arranged in order of decreasing eigenvalues, then only the eigenvectors corresponding to ‘significant’ 
contribution are used in the matrix L.

Ridge Regression

Ridge Regression is a general term encompassing different forms of regression (linear, logistic, survival, 
etc.) that incorporates the ‘ridge penalty’. The ridge penalty is known by many names, e.g. Tikhonov 
Regularization, Constrained Linear Inversion, etc. It first gained wide recognition through the landmark 
1970 paper by Hoerl and Kennard (Hoerl & Kennard, 1970). It is ideal for use in models with multicol-
linearity and other ill-posed problems. Like other regularization techniques, it involves imposing a con-
straint on the parameters in a model in order to mitigate variance inflation. Say we have a linear model 
with p parameters, which we represent as a p-dimensional vector β, then the ridge penalty effectively 
controls the L2 norm of β. In other words, it coerces the sum of squares of the parameters to fall below 
a particular value which is usually a tunable parameter:

β
2

2 2≤ c (Hoerl & Kennard, 1970)	 (12)

The ridge penalty exploits the bias-variance tradeoff by increasing the bias of the parameter estimates 
in exchange for a reduction in their variance. The latter is particularly important in ill-posed problems 
(e.g. where strong correlations exist among independent/explanatory variables) which are often plagued 
by variance inflation. The strength of the penalty (regularization) can be tuned to suit the particular 
problem it is applied to.

Validating Regression Based Methods

The validity of the regression model needs to be tested to have confidence in its use to predict proper-
ties of new samples. The type of validation used depends on the number of samples in our training 
set (samples where there is an independent assessment of the property that is being determined in the 
modelled experiment).

1. 	 Cross-Validation (CV): In full Cross-Validation (sometimes called ’leave-one-out’ CV), an ob-
ject is left out of the training set and then its property is determined based on a model established 
from the rest of the training set. Thus, this object does not form part of the process of finding the 
model. This is repeated for each object in the data set. If it is a good method, then the predicted 
properties will be close to the values determined independently. A superior method, if there are 
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sufficient objects or samples available in the data set, is to divide the set into a training set and a 
test set. Roughly a 2:1 training: test ratio is said to be the best. The model is established based on 
the training set only and is used to predict the properties for the test set.

Even better is to use a ‘bootstrap’ method where a test set is selected at random and a model is con-
structed from the remaining samples. The procedure is applied, the selected samples are replaced and 
then select a new test set. This is repeated many times (many thousands of resamplings are quite possible 
with modern computing methods).

Data Reduction and Pattern Recognition in Chemometrics

The ultimate goal of data reduction is the replacement of a large amount of measurements by a few char-
acteristic numbers in which all relevant information has been preserved. Depending on the type of data 
measured and the type of information needed, there are a number of methods involved in data reduction. 
In most cases, the data reduction method can be obtained by fitting a model through the data points. 
Consequently, the obtained model is then used to describe the data instead of the data themselves. The 
process of fitting models is one of the principal cores used by chemometricians. Within the context of 
calibration, the model is usually a straight line. In multicomponent analysis, on the other hand, the model 
consists of a system of linear equations. Lastly in optimization, the model is a polynomial consisting of 
several independent variables (Deming, Michotte, Massart, Kaufman & Vandeginste, 1988).

Principal Component Analysis (PCA)

The ultimate goal of Principal Component Analysis (PCA) is to obtain a set of K variables and identify 
a smaller number of components that can be determined from the data while representing a large pro-
portion of the variance in the data. This is simply accomplished by identifying relationships between 
the K variables and producing a set of K uncorrelated components (new variables). Each component is 
a function of the original variable. Such a function is called an eigenvector (O’Donoghue, 2013).

It is often useful to reduce the number of variables prior to exploratory or supervised data analysis 
(Brereton, 2009). Principal components (PCs) can be used for many different purposes and in addition to 
data visualization can also be used for data reduction. Given a matrix X, instead of utilizing the original 
J raw variables in such original matrix, ‘A’ orthogonal variables or PCs are used as represented by a 
scores matrix T as input to the classifier (Brereton, 2009).

PCs are often ordered according to their size or eigenvalues with PC1 being the largest and PCA the 
smallest. By this, it simply means that PC1 consists of scores that have the largest sum of squares or 
largest eigenvalue. PCA is known to be an unsupervised method of data reduction. This means that the 
calculation of PCs does not take group membership of samples into account. This creates advantages 
within the context of data reduction prior to model testing. For example, there is no risk of over-fitting 
if PCA is performed on the overall dataset including that of the testing and training sets together prior 
to classification (Brereton, 2009).

PCA is a data reduction method. Its aim is to reduce a large data set into a much smaller set but one 
which retains the essential information of the original set. For example, consider the measurement of the 
IR spectra of 100 samples from 400-4000 cm-1. If, as commonly done, every 1 cm-1 is performed, then the 
final data set consists of 100 x 3600 or 36,000 points. However, much of this data is superfluous. Two 
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wavenumbers that are only 1cm-1 apart will contain essentially the same information. Thus, we could 
leave out a lot of the data, but which wavelengths to be omitted remains the challenge.

In this example, there are 4 variables X X
1 4
−  (the 4 wavelengths). The idea behind PCA is to find 

new variables Z Z
1 4
−  which are linear combinations of the original variables:

Z a X a X a X a X Z a X a X a X a X
1 11 1 12 2 13 3 14 4 4 41 1 42 2 43 3 44 4
= + + + = + + +.... , 	 (13)

(Brereton, 2009). Of course, there is no reduction if there are still 4 variables but in PCA, the Z 
variables (called principal components) are ranked so that Z

1
 contains the largest amount of information 

(i.e. accounts for the largest amount of variation in the original data set) and decreasing to Z
4
. In this 

case, the first two PCs account for 88% of the total variation so the total data set can be represented 
adequately with only 2 variables. This isn’t a big reduction here but in the IR case described above, with 
3600 variables, it is often possible to describe the whole data set with only a few variables.

Another feature of PCA is that the coefficients aij are chosen so that the Z’s are orthogonal (i.e. un-
correlated). The following are the steps in calculating the coefficients:

Step 1: Pretreatment

Let X be our original data set. Commonly in PCA there are 3 forms of pretreatment applied to X:

Table 1. Example data used for Principal Component Analysis (PCA)

Compound Wavelength 1 (cm-1) Wavelength 2 (cm-1) Wavelength 3 (cm-1) Wavelength 4 
(cm-1)

300 350 400 450

A 16 62 67 27

B 15 60 69 31

C 14 59 68 31

D 15 61 71 31

E 14 60 70 30

F 14 59 69 30

G 17 63 68 29

H 16 62 69 28

I 15 60 72 30

J 17 63 69 27

K 18 62 68 28

L 18 64 67 29

Mean 15.75 61.25 68.92 29.25

Standard deviation 1.485 1.658 1.505 1.485

(Brereton, 2009)
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1. 	 No pretreatment
2. 	 Mean-Centered: The mean of each column is subtracted from each entry in the column
3. 	 Standardization: as well as Mean Centering wherein each entry in the column is divided by the 

column Standard Deviation. Thus, the mean of each column is zero and Standard Deviation (s.d.) 
=1

Which one to apply? In spectroscopy, data is commonly mean-centered. If the data variables are 
parameters which differ in scale (e.g. pH and temperature), then the data should be standardized.

Step 2: Determine the Eigenvalues and Eigenvectors 
of the Pretreated Data Matrix

The PCA of X (correlation option) gives eigenvalues and eigenvectors of the correlation matrix

= eigenvalues, eigenvectors of [ ] / ( )W W nT ∗ −1 where W is standardized matrix	

( ) /
,

x x s
ij av i i
− 	

The PCA of X (covariance) is eigenvalues, eigenvectors of[ ] / ( )V V nT ∗ −1  where V is a centered 
matrix ( )

,
x x
ij av i
− The aim of PCA is to decompose the original (treated) matrix W or V as follows:

W T Lt= ∗ (Brereton, 2009)	 (14)

In the aforementioned equation, L is the loadings matrix and has columns which are the eigenvectors 
of W. The loadings relate the new (latent) variables to the original variables. These are the coefficients aij 
listed above. T is the scores matrix and shows how the objects (rows of X) relate to the latent variables. 
It is important to remember that loadings relate to variables (columns) and scores to objects (rows).

T can be determined by: T W L= ∗ . There are several algorithms used to obtain T and L. One is 
called Single Value Decomposition which decomposes W (or V) as follows

W U diag Lt= ∗ ∗( )λ (Brereton, 2009)	 (15)

Thus, T U diag= ∗ ( )λ  and diag( )λ is a square matrix with the eigenvalues along the diagonal and 
zeroes everywhere else.

The PCA analysis of the above data set gave the following output (Table 2).
Note that the first PC describes 72% of the total variability and PC1+ PC2 describes 88% of the 

variability (Refer Table 2). The scores give useful information on groupings of objects (this is called a 
score plot) (Refer Figure 4).

There are clearly two groups of objects. The separation is along the PC1 axis. Examining the load-
ings shows that the two higher wavelengths separate in a positive direction and the two lower ones in a 
negative direction. Closer examination of the original data should confirm that one group has slightly 
higher readings for the higher wavelengths and lower readings for the lower wavelengths.
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Table 2. PCA analysis of data from Table 1

Eigen Analysis of the Correlation 
Matrix

Eigenvalue 2.880 0.654 0.389 0.0844

Proportion 0.720 0.161 0.097 0.021

Cumulative % 72 88 98 100

Loadings Scores

PC1 PC2 PC3 PC4 PC1 PC2 PC3 PC4

-0.546 0.237 0.395 -0.699 -1.595 -0.766 -0.991 0.185

-0.546 0.298 0.324 0.712 1.291 -0.466 0.561 -0.128

0.400 0.912 -0.072 -0.043 1.722 -1.412 0.147 -0.058

0.493 -0.145 0.856 0.048 1.4929 0.926 0.660 0.243

1.592 0.078 -0.330 0.280

1.656 -0.708 -0.477 -0.120

-1.362 -0.015 0.575 0.181

-0.731 0.348 -0.511 0.160

1.755 1.451 -0.160 -0.248

(Brereton, 2009)

Figure 4. PCA scoreplot of data from Table 1 (Brereton, 2009)
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Clustering techniques have been employed in a wide range of disciplines. In Archaeology, cluster-
ing has been used to investigate the relationship between various types of artifacts. In psychiatry, the 
methods have been utilized to refine existing diagnostic categories. Further, in market research, cluster-
ing techniques have been employed to produce groups of consumers with different purchasing patterns 
(Everitt et. al., 2011).

Essential to the understanding of various clustering techniques is the correct identification of the 
number k of clusters that is somehow inherent in the data. The ultimate goal of cluster analysis is to find 
clusters where the objects within the clusters are as similar as possible and objects between different 
clusters are as dissimilar as possible. In order to assess the similarity and dissimilarity of objects within 
the clusters, a measure of ‘homogeneity’ and ‘heterogeneity’ between the clusters is defined. Homoge-
neity measures between clusters can be based on the maximum, minimum or average of the distances 
between all of a cluster or an average distance of the objects within a cluster to the cluster center 
(Varmuza & Filzmoser, 2009). One possible choice for a measure of homogeneity w

j
 within a cluster 

j is:

w x cj i
j

j
i

n

= −
=
∑ ( )

1

2
1

(Varmuza & Filzmoser, 2009)	 (16)

A measure of heterogeneity between two clusters, on the other hand, can be based on the maximum, 
minimum or average of all pairwise distances between the objects of the two clusters, or on the pairwise 
distances between the cluster centers (Varmuza & Filzmoser, 2009). Thus, the measure of heterogeneity 
B
jl

between cluster j and l can be described as:

B c cjl j l= −
2

(Varmuza & Filzmoser, 2009)	 (17)

By combining the two aforementioned criteria, we come up with the validity measure as given by 
the equation below which depends on the chosen number of k clusters. In order to determine the num-
ber of clusters, a graph showing the number of clusters versus the validity measure is essential with a 
knee indicating the optimal number of clusters (Varmuza & Filzmoser, 2009). The results in a validity 
measure V(k) can be defined as:

V k
w

B

ji

k

jli

k
( )= =

=

∑
∑

1

1

(Varmuza & Filzmoser, 2009)	 (18)

A number of methods exist for Clustering. The most commonly used and simplest method is the k-
Means Clustering. In this technique, the original dataset is split into k clusters where k is known. Con-
sequently, each sample xi should be attributed to one of the clusters S

k
, k=1, …..,K. It should be noted 

that each cluster is characterized by having a centroid m
k

 which is defined as the center of masses of 
all samples in the cluster (Pomerantsev, 2014).
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1. 	 Pattern Recognition: Pattern Recognition is the area of Chemometrics where the patterns or struc-
ture in our data can be discovered. Basically, the methods can be divided into unsupervised and 
supervised methods. In unsupervised methods, no prior assumptions about structure or groupings 
in our data is made. Infrared spectra of a large range of polymers may be recorded, for example. 
A technique like Principal Component Analysis (PCA) is used that produces a plot of the first two 
principal components. Then examine this plot to see if there are any groupings of the samples and 
if so do these samples have anything in common structurally. PCA requires no assumptions to be 
made about possible groupings before carrying out the analysis. PCA is an exploratory method 
of data analysis used to first look at any structure in our data. Unsupervised Pattern Recognition 
is also referred to as Cluster Analysis. The chief method used in cluster analysis is Hierarchical 
Cluster Analysis which attempts to group objects which are ‘similar’ (there are a range of methods 
used to measure this similarity) and this is displayed on a dendrogram. In supervised methods, a 
training set of objects is used where the groups are known. The aim is then to form a rule, based 
on the measurements, which will assign each object to its correct group. The object is assigned to 
a group according to which group is the ‘closest’. It is the choice of a distance measure that varies 
between the methods.

2. 	 Unsupervised Cluster Analysis
a. 	 Principal Component Analysis (PCA): PCA is a data reduction method which reduces the 

initial data set to a set of new variables (called principal components) which are much smaller 
in number than the original number of variables but retains most of the information in the 
original data set. Visually, PCA can be displayed as the score plot of the first two principal 
components. This topic is covered further in the section above ‘Principal Component Analysis.’

b. 	 Hierarchical Cluster Analysis (HCA): The initial step in this analysis is to determine simi-
larity between objects. The key is the measure of similarity used. Options are:
i. 	 Correlation Coefficient Between Samples: This is a statistical measure of the strength 

of a linear relationship between paired data. In a sample, it is denoted by r and is by 
design constrained as − ≤ ≤1 1r  where positive values denote positive linear correla-
tion, negative values denote negative linear correlation, a value of zero denotes no linear 
correlation and the closer the value is to 1 or -1, the stronger the linear correlation.

ii.	  Euclidean Distance: The distance between 2 samples k and l is defined as:

d x x
kl kj lj

j

J

= −
=
∑ ( )2
1

(Brereton, 2009)	 (19)

where there are J measurements and xkj is the jth measurement on sample k. Each measurement might 
be an absorbance in a spectrum at one wavelength, for example (Brereton, 2009).

iii.	 Manhattan Distance:

d x x
kl kj lj

j

J

= −
=
∑
1

(Brereton, 2009)	 (20)
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iv.	 Mahalanobis Distance:

d x x C x x
kl k l k l

T= − ∗ ∗ −−( ) ( )1 (Brereton, 2009)	 (21)

Here the x’s are column vectors of measurements on a single object and C is the variance-covariance 
matrix whose elements represent the covariance between any two variables.

Once a measurement of similarity is decided, the next step is to link the objects. This can be done in 
several ways. The most common approach is to link the objects one at a time using the chosen similarity 
measurement. This can be depicted in a dendrogram (Refer Figure 5). For example, suppose that we have 
6 objects or samples and the correlation coefficient is used as the similarity measurement. The two most 
similar objects are linked as a branch at the bottom of the tree. This group is then linked to the object 
which is most similar to this group to form a new group. This is continued till all objects are linked in 
the tree. An example of such a tree is shown below.

3. 	 Supervised Pattern Recognition: With these types of methods, look at whether measurement of 
a property or set of properties can be used to assign an object to a group. For example, could the 
infrared spectrum of a polymer be measured and determine whether it is a polyolefin or a con-
densation polymer? First establish a model using a training set of objects. This set must contain 
sufficient members of each of the groups. The question is then how to assign membership of the 
group.
a. 	 Discriminant Analysis: This is a collection of parametric classification methods that models 

each class by its centroid and its covariance matrix and assigns objects to the ‘closest’ class. 
The methods differ in the way the object-class ‘distance’ is calculated.
i. 	 Nearest Mean Classifier (NMC): This is the simplest method. The simple Euclidian 

distance is used as the distance measure to the class centroid. The class centroid is the 
average for each measure for the objects in the group. For example, if the measure was 

Figure 5. Example dendrogram for classification of observations (Brereton, 2009)
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an IR spectrum, the centroid would be a J-vector where each j element was the average 
of absorbances at the jth wavenumber. This method is a poor performer because it ignores 
scale differences. In the IR example, this would not be so important but if the measures 
have very different scales (e.g. if we had environmental data and one measure was pH 
and another EC in uS/cm then the EC measure would dominate).

ii. 	 Linear Discriminant Analysis (LDA): The distance method used is the Mahalanobis 
Distance. The method assumes the same covariance structure for each group i.e. each 
group is equally ‘scattered’. Boundaries between the classes are straight lines or planes 
(Refer Figure 6).

iii. 	 Quadratic Discriminant Analysis (QDA): This method also uses the Mahalanobis 
distance measure but a covariance matrix is calculated for each group. Thus, the measure 
varies depending on what group the object is in. QDA works well when group differences 
depend on scale and not location. Boundaries between groups can be curved.

iv. 	 Regularized Discriminant Analysis (RDA): This method spans all the discriminant 
methods above. Often the optimum method is found between the above methods. RDA 
is a biased method as it has two adjustable parameters λ and γ. λ biases the method to-
wards a single class covariance matrix. γ shrinks the class covariance matrix towards a 
multiple (the average of the eigenvalues) of the identity matrix. Both parameters have 
values between 0 and 1. λ = 0 and γ = 0  regularized discriminant analysis is same as 
quadratic discriminant analysis. λ = 1 and γ = 0  is same as linear discriminant analysis. 
λ = 1 and γ = 1 is same as the nearest mean classifier.

v. 	 Soft Independent Modeling of Class Analogy (SIMCA): SIMCA, like RDA, is a 
biased version of discriminant analysis. Instead of calculating unbiased class covari-
ance matrices, each group is represented by a principal components model. An object is 
classified according to its distance from this model. The method is ‘soft’ in that classes 
can overlap and objects can belong to more than one class.

Figure 6. Example Linear Discriminant Analysis (LDA) plots (Brereton, 2009)
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vi. 	 Partial Least Squares Discriminant Analysis (PLSDA): PLS can be used to carry out 
class modeling. A PLS model is set up the usual way with the y variable, a number in-
dicating group membership. For example, consider the investigation of a 2-way classi-
fication such as determining gender from lifestyle preferences. A training set with columns 
(the X block) indicating preferences for various lifestyle choices is set up y = 1  for male 
andy = −1 for female is then assigned. The model is then applied to the test set to predict 
y and if y is positive, assign male and female for negative y.

Wavelet Transforms

Most analytical instruments often develop noises and fluctuations at the recording stage of the spectrum. 
This causes a reduction in the original signal of the analyte leading to decreased signal to noise ratio 
also called noise effect. Noise effect is often eliminated by various means so as to yield quality infor-
mation from the acquired experimental data. Wavelet Transforms represents one of the most powerful 
methods to improve Signal to Noise ratio. A wavelet is defined as a family of functions derived from a 
basic function called the wavelet basis function by dilation and translation. Wavelet basis functions are 
those functions with some special properties such as orthogonality, compact support, symmetry and 
smoothness. Wavelet Transform is a projection operation of a signal onto the wavelet (Chau et. al., 2004).

In general, Wavelet Transform is a wavelike function that upon scaled and translated, can be used to 
decompose a signal into its basic constituents at different scales. Each scale component can be converted 
into a frequency range. Thus, the resulting Wavelet Transform measures the time-frequency variations of 
frequency components in a non stationary sign (Liang, 2014). The Wavelet Transform method is often 
considered to be advantageous over the traditional Fourier Transform method when the signal contains 
discontinuities and sharp spikes. The method also offers good localization properties in both, the time 
domain and the frequency domain (Bos & Vrielink, 1994).

Several applications of Wavelet Transforms have been documented such as pre-processing of infrared 
spectra deionizing or compression of signals through thresholding (Alsberg et. al., 1997; Mittermayr et. 
al., 1996; Walczak & Massart, 1997), Pattern Recognition and compression of data (Walczak et. al., 1996), 
and qualitative analysis based on linear models (Depczynski et. al., 1999; Jouan-Rimbaud et. al., 1997).

Continuous and Discrete Wavelet Transforms

Wavelet Transform comprises two distinct parts called the Discrete Wavelet Transforms (DWT) and Con-
tinuous Wavelet Transforms (CWT) which were developed independently in several fields (Daubechies, 
1992; Ma & Shao, 2004; Walczak, 2000). While CWT is popular among physicists, the DWT is more 
common in numerical analysis, signal and image processing.

1. Continuous Wavelet Transform

The CWT is an operator that displays and analyzes the characteristics of a signal depending on two 
variables: time and scale. Hence, as a two-variable function, CWT can be considered as a surface or 
image. CWT is typically defined with respect to a specific function, called a mother wavelet that satis-
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fies some particular properties. The Continuous Wavelet Transform W
ab( )

 for a time signal x t( )  using 

a wavelet function ψ( )t  is given by the equation
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where a, b and R represents scale variable, shift variable and set of real numbers respectively. The wave-
let function ψ(t) is a continuous function in both the time domain and the frequency domain called the 
mother wavelet and the superscripted asterisk (*) symbol represents operation of complex conjugate. 

For real-valued wavelets, ψ ψ*( ) ( )t t= , the mother wavelet acts as a source function to generate daugh-
ter wavelets by dilation and shift operations from the mother wavelet and is represented by the equation

ψ ψ
( , )
( )

a b
t

a

t b
a

=
−









1 (Dinç & Baleanu, 2004; Maldague, 1994) 	 (23)

where a and b are dilation and translation parameters respectively.
It should also be taken into consideration that not every function can qualify to be a mother wavelet 

(Sadowsky, 1996). In order for a function to be a mother wavelet, it should satisfy an essential property 
called the “admissibility condition” as described by the following equation

C dψ

ψ ω

ω
ω= < +∞

∞

∫
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0

(Dinç & Baleanu, 2004; Maldague, 1994)	 (24)

where Cψ  is a constant corresponding to a particular wavelet ψ( )t , ω is the frequency and ψ ω( ) is the 
Fourier Transform of the wavelet ψ( )t .

2. Discrete Wavelet Transform

The main difference between the Discrete Wavelet Transform (DWT) and CWT is that it decom-
poses the signal into mutually orthogonal set of wavelets. It is therefore an implementation of the Wave-
let Transforms using a discrete set of the wavelet scales and translations obeying some defined rules 
(Dinç & Baleanu, 2004; Liang, 2014; Maldague, 1994). The basic functions for DWT are the scaled and 
dilated versions of the wavefunctions ψ( )t and scaling function ( ( ))φ t  and can be conveniently expressed 
by the equation below:

φ φ( ) ( )x a S k
k k

k

= −
=−∞

∞

∑ (Dinç & Baleanu, 2004; Liang, 2014; Maldague, 1994),	 (25)

where S is the scaling (normally chosen as 2).
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One of the distinct features of DWT is that it can be regarded as a mathematically formalized subband 
coder and are normally implemented as a bank of bandpass filters (Dinç & Baleanu, 2004; Maldague, 
1994). Digital Filter banks are a set of four filters consisting of both low pass and high pass filters and are 
used in the analysis and reconstruction of the signals. The filters are collectively called Quadrature –Mir-
ror Filters (QMFs). The QMFs ensures perfect reconstruction of the signal with no loss of information.

Wavelet Translation and Dilation

Translations and dilations are two characteristic operators applied to single real valued functions of the 
general form ψ ∈ L R2( )  Here, ψ  is typically referred to as the analyzing wavelet (otherwise known as 
the ‘mother’ wavelet), and L R2( ) refers to the space of infinite-energy (also known as square-integrable) 
functions. A translation is defined as a shift of the argument along the real axis. For example, for a 
given function ψ( )t  and a real value τ , the translation of ψ  is given by ψ τ( )t − . Dilation, on the 
other hand, simply refers to a scaling of the argument, e.g. for a given function ψ( )t and a positive pa-
rameter s, a dilation of ψ  is given by s t s−1 2/ ( / )ψ . Parameter s here refers to a continuous, positive real 
parameter indicative of scale. Therefore, a dilation of a function corresponds to either an expansion or 
contraction of the function ψ . The extra multiplicative term s−1 2/ in the dilation expression is introduced 
simply as a Normalization factor to guarantee an orthonormal wavelet basis.

Other Data Reduction Techniques

1. Linear Calibration Correlation

In order to clearly understand the concept of Least Squares Line, it is important to examine the equations 
used in the process. Given two sets of data, X and Y, which are related to each other by the following 
equation below:

Y mx b= + (Robinson, Frame & Frame II, 2014)	 (26)

The least squares slope of a line fitting this data is given by the equation below:

m
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− −
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(Robinson, Frame & Frame II, 2014)	 (27)

And the least squares Y-intercept is given by:

b Y mX= −
��

(Robinson, Frame & Frame II, 2014)	 (28)

In the above equations, i is the data point index, m represents the slope and b is the Y-intercept of the 
line (Robinson, Frame & Frame II, 2014).
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The calculations involved in determining the calibration line constitute subtracting the average X from 
all X values, the average Y from all Y values, then consequently performing the appropriate summing, 
multiplication, squaring and division (Robinson, Frame & Frame II, 2014).

2. Errors and Confidence Limits

Standard Error is a factor that tells us how accurate our estimate of the mean is likely to be. Confidence 
Limits, on the other hand, are indicators to determine how accurate the mean is likely to be (Robinson, 
Frame & Frame II, 2014).

3. Partly Straight, Partly Curved Calibration Plots

As previously stated, calibration plots are generated by expressing the relationship between sample 
concentration and a measurable variable as

y f x= ( ) (Vandecasteele, 1997)	 (29)

where y is the measurable variable and x is the sample concentration. In linear calibration plots, this 
relationship takes the form of

Y mx b= + (Vandecasteele, 1997)	 (30)

where Y is the measurable variable, ‘m’ is the slope of the linear curve, ‘x’ is the sample concentration 
and ‘b’ is the y-intercept of the linear curve. There are, however, numerous reasons why a theoretically 
linear plot can exhibit curving or deviance from the projected least-squares slope. An unavoidable cause 
of data variance is the indeterminate, or random errors which are the result of uncertain measurements 
or unknown human inaccuracies. Indeterminate errors cause scattering along either side of the least-
squares slope.

Some calibration plots exhibit minimal scattering but are not entirely linear. Partly straight, partly 
curved calibration plots can occur when using spectrometric methods of obtaining a measurable variable 
(y). Curves which move away from a previously determined least-squares slope typically move in the 
negative direction on the high-concentration side of the calibration plot and may represent the maximum 
detection capabilities of the method or machinery in question. These non-linear deviations can appear 
quadratic in nature as the analyte approaches maximum detectability and peaks at the limit of detection. 
Calibration plots exhibiting this type of curving cannot be analyzed using standard addition unless the 
calibration plot of the machinery’s internal standard displays the same type of nonlinear behavior at the 
same x-values as the analyte (Vandecasteele, 1997).

Regression Diagnostics

Comparison of regression models is best done by first calculating the residuals.
The residuals are calculated as follows:
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e y Y
i i i
= − (Brereton, 2009)	 (31)

where Yi are the calculated values using the following model:

ESS e
i

i

=∑ 2 TSS y mean y
i

i

= −∑ ( ( ))2 and R ESS
TSS

2 1= − 	 (32)

R2 is called the ‘Coefficient of Regression’ and can also be calculated as the square of the correlation 
coefficient of y and Y. This parameter gives a measure of the ‘goodness of fit’ of the model and gives 
the percentage of variation in the data which can be explained by the regression model.

The predictive power of the model can be determined from the Cross-Validated residuals

e y y
CV i i i( ) ( )= − −

� (Brereton, 2009)	 (33)

where y i
�
( )−  denotes the predicted value of the ith observation from a model calculated without that 

observation. Therefore, the Predicted Residual Error Sum of Squares (PRESS) can be calculated as:
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P (Brereton,2009)	 (34)

The R
CV
2  values are a measure of the predictive ability of the model. The ‘best’ model, in terms of 

the number of principal components used in the model, is thus the one which gives the highest value of 
R
CV
2 . Note that while R2 always improves with the addition of more components, this is not true of R

CV
2  

The situation of too many components is an example of ‘overfitting’.
Another diagnostic used is RMSEC (Root Mean Square Error of Calibration) as given by:

RMSEC
ESS
df

= (Brereton, 2009)	 (35)

Here, df is the degrees of freedom. RMSEP (Root Mean Square Error of Prediction) is a similar 
diagnostic summed over the prediction samples.

Variable Selection

In regression modeling for data sets with a small number of variables, the common method of variable 
selection is stepwise variable selection. The common approaches are forward and backward selection. 
Forward Selection starts off with a single variable (the variable which is most strongly associated with the 
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response y). In subsequent steps, variables not present in the current model are considered for addition, 
and then add the variable which has the highest association with the residuals from the current model. In 
backward elimination, the model starts with all variables and eliminates at each step the variable whose 
exclusion results in the lowest increase in residual sum of squares. Termination rules are usually evoked 
when addition or elimination of variables achieves no significant improvement. Stepwise Regression 
is a combination of the two processes where variables may be added or removed according to certain 
criteria. A variable previously removed can come back into the model at a later stage, for example.

Stepwise Regression methods are only feasible when the number of variables is relatively small 
and independent. With data sets from Chromatography, with measurements at each wavelength or time 
interval there may be thousands of variables for each sample and this number will greatly exceed the 
number of objects or samples. While using PLS or PCR, variables can be combined into a small number 
of ‘latent’ variables, a process of variable selection can greatly improve the performance of the model.

Simple inspection of the data, as overlapping spectra or chromatograms, for example, can sometimes 
be sufficient. ‘Baseline’ areas which are predominantly noise can be removed and possible outliers iden-
tified. Simple functions of the variables can then be examined to help choose regions to be excluded. 
These include, for each column: (i) Mean (ii) Standard Deviation (s.d.) (iii) Correlation of the column 
with the response variable, y (iv) S.D./Mean.

The mean indicates large responses but this may not vary much from sample to sample (e.g a con-
taminant at a constant level in all samples). The Standard Deviation shows which variables have the most 
variation across all the samples. This variation, however may not be due to variation in y. A component, 
which is not the response variable being analyzed, could vary between samples. The variation between 
samples due to y can be examined by using the Correlation Coefficient. Using S.D./Mean may help to 
identify less intense peaks that may be interesting.

There is a very large number of other variable selection processes which have been advocated in the 
literature. Criterion-based procedures look at all possible models and evaluate them using some crite-
rion. R2 may appear to be the simplest but R2 always increases as variables are added to a model so 
using this as a criterion results in ‘overfitting’ and useless models for prediction. Adjusted R2, called 
R
a
2 , can be used where
R n n p R
a
2 21 1 1= − − − −( )( )( )  N is the number of samples and ‘p’ the number of variables. An-

other commonly used criterion is Predicted Residual Sum of Squares (PRESS) which is the sum of 
squares of the residuals (the ith residual is calculated using a model with the ith variable left out of the 
model). The model with the lowest PRESS is selected.

The problem with criterion methods is that the number of models grows exponentially as ‘p’ in-
creases as there are 2 1p −  possible models. Even with as few as 100 variables, it would take about 1021 
years to evaluate all models even at a rate of 10 evaluations per second. Algorithms have thus been 
developed to improve the selection process for models. The best known is probably the Genetic Algo-
rithms methods which follow the concept of ‘survival of the fittest’ when competing with other models. 
Other procedures such as Particle Swarm Optimization and Ant Colony Optimization, which both 
mimic biological processes, have been suggested. Overall, though, the processes of simple inspection 
and plotting functions of the variables that were described previously will be sufficient to select regions 
for modeling.
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Programming Tools Used in Analytical Chemistry Big 
Data Storage and Visualization Techniques

Various programming tools are available for Big Data Storage and Visualization Techniques in Analytical 
Chemistry. MapReduce is a programming model correlated with the implementation for processing and 
generating large data sets with a parallel, distributed algorithm on a cluster (Shankland, 2008). It was 
proposed by Google for distributed processing of large datasets on massively parallel systems (Dean & 
Ghemawat, 2004). The program of MapReduce consists of two parts: Map() procedure (a method) and 
Reduce() method. The Map() procedure is used for filtering and sorting of data (e.g. classify students by 
first name). The Reduce() method, on the other hand, functions for summary operation. (e.g. determining 
the total number of students in each queue). The MapReduce System is also called an “infrastructure” or 
“framework” system. It coordinates the processing by marshalling the distributed servers as well as running 
various tasks in parallel. It also supervises all communications and data transfers between various parts 
of the system, and provides warnings for redundancy and Fault Tolerance (Dean & Ghemawat, 2004).

Within the context of Chemometrics, the MapReduce model has been used in an algorithm for 
calculating Principal Component Regression (PCR). The algorithm consists of several steps: centering 
of input matrix of regressors, optional regressors scaling, Principal Components Decomposition of the 
preprocessed input matrix, PCR parameters calculation, Regression Quality evaluation and calculation 
of prediction for a given set of samples. All these steps except for one are implemented in terms of 
map-reduce functions and could, therefore, be parallelized and scheduled by Hadoop (discussed below). 
Principal Components Decomposition is the only computational step realized in non-parallel manner 
because sequential implicit QL-algorithm (Demmel, 1997) used in this step solves the eigenvalue prob-
lem for up to 1000 regressors faster than what the Hadoop starts and warms (Nuzhdin & Zhilin, 2012).

Apache Hadoop, an open- source software implementation of MapReduce, is used for distributed 
storage and also for processing of relatively large size of data sets (i.e. Tera- and even petabyte scale) 
(Nuzhdin & Zhilin, 2012). It is made up of computer clusters which is built from commodity hardware. 
It is believed that all the modules in Hadoop are outlined with a foundational supposition such that 
hardware failures are common phenomena and should be automatically handled by the framework (The 
Apache Software Foundation, 2014). Hadoop detects itself and manages failures at the application layer 
and convey a highly-available service on top of a cluster of commodity machines rather than rely on 
hardware to deliver high-availability (BigFoot Team, 2013). As previously mentioned, Hadoop was used 
in PCR algorithm. Specifically, the algorithm was tested on experimental 2-node Hadoop cluster for 
synthetic datasets of the dimension 1,000,000 x 500 and demonstrated speedup factor of 1.8 (Nuzhdin 
& Zhilin, 2012).

Apache Hive is considered to be the defacto standard for interactive Structured Query Language 
(SQL) queries over petabytes of data in Hadoop since its developement in 2008.The Apache community 
has considerably improved Hive’s speed, scale, and SQL semantics with the completion of the Stinger 
Initiative, and the next phase of Stinger. Hive easily integrates with other critical data center technolo-
gies using a familiar Java Database Connectivity (JDBC) interface. According to data analysts, the usage 
of Hive is to query, summarize, explore and analyze data, and then turn these into actionable business 
insight. The advantages of using Hive for Enterprise SQL in Hadoop include its familiarity by many 
users as well as its compatibility with many devices. It is also considered fast, scalable and extensible 
(Apache Software Foundation, 2017). While there may be none or limited studies showcasing the use 
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of Apache Hive in analyzing analytical data, it may potentially be used for facilitating, querying and 
managing massive datasets generated by various sophisticated analytical instrumentation.

Spark is an in-memory data analysis with a Mapreduce programming model written in Scala. Resilient 
Distributed Datasets (RDDs), fault-tolerant data structures for Cluster Computing is where Sto store and 
mpark is based. The RDDs are established, subdivided assemblage of objects that support a wide range 
of transformations and this allow the apps to keep working sets in memory for efficient reuse (caching). 
By efficacy of working in memory, Spark is extraordinarily efficient for iterative algorithms and interac-
tive mining (BigFoot Team, 2013; Zaharia et. al, 2010). A crop breeding data analysis platform on Spark 
has been proposed. The platform consists of Hadoop Distributed File System (HDFS) and cluster based 
on memory iterative components. With this cluster, crop breeding large data analysis tasks in parallel 
through API provided by Spark was achieved (Chen et. al., 2016).

Apache Pig is a platform for analyzing huge data sets consisting of a high-level language for expressing 
data analysis programs coupled with infrastructure for evaluating these programs. The salient property of 
Pig programs is that their structure is amenable to substantial parallelization which in turns enables them 
to handle very large data sets. Pig is a high level scripting language that is used with Apache Hadoop 
(Apache Software Foundation, 2016; Apache Software Foundation, 2017). Within the context of applied 
Spectroscopy in Analytical Chemistry, Pig provides execution framework for parallel computation in a 
study involving a novel quantitative spectral analysis method based on parallel BP neural network for 
dissolved gas in transformer oil. The parallel BP Neural Network model is performed on the Hadoop 
Cluster Computing platform for component prediction. The experimental results verify that the proposed 
model can predict the component concentrations of the dissolved gas in transformer oil correctly and 
has high effectiveness (Zhong et. al., 2016).

Apache Cassandra is a tool which is developed by Facebook and this is a distributed data storage 
system comparable to BigTable. Apache Cassandra is designed for superintending sizable amounts of 
structured data dispersed across many commodity servers, thus, delivering a key-value store with con-
cordant consistency. The Cassandra API consists of three very simple methods. These are the insert, 
get and delete. This allows the user to operate data with the use of multi-dimensional map indexed by 
the key. Highly available service with no single point of failure is the main goal of Cassandra (BigFoot 
Team, 2013; Lakshman & Malik, 2010). Apache Cassandra has possible applications in analyzing large 
genomic datasets or data output from analytical instrumentation.

Navigating large datasets in Chemometrics and Analytical Chemistry might be facilitated using vari-
ous distributed storage systems such as Amazon Dynamo and Google Bigtable. Such storage systems 
will be discussed below. Further, the advent of powerful

Chemometric and analytical high-throughput methodologies have paved a way to generate massive 
datasets. These datasets will be stored in databases using modern data compression and data manage-
ment as mentioned in this section. Basic visualizations such as bar charts and scatter plots are now 
realized as JavaScript-based interactive views and might have potential applications in Chemometrics 
and Analytical Chemistry.

Amazon Dynamo has been developed and used by Amazon which is a key-value distributed storage 
system. Dynamo is a structured overlay which is based on unchanging assortment with utmost one-hop 
request routing. It uses a vector clock scheme and a write operation. Clock scheme is used to perceive 
conflicts while a write operation requires a read of the timestamps (BigFoot Team, 2013; DeCandia et. 
al., 2007).
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Google Bigtable was designed by Google which is a distributed storage system. Google Bigtable is 
used to store and manage petabytes of structured data across thousands of commodity servers. At the 
start, Google outlined Bigtable as distributed data storage solution for several applications (like Google 
Earth and Google Finance), which aims in providing adjustable, high performance solution for different 
application requirements (BigFoot Team, 2013; Chang et. al., 2007).

jQuery is a cross-platform JavaScript library which is designed to make more comprehensible the 
client-side scripting of HyperText Markup Language (HTML) (The jQuery Foundation, 2017). In ad-
dition, jQuery is the most popular JavaScript library in use at the present time. It has an installation on 
the 65% of the top million highest-trafficked sites on the web. The jQuery’s syntax is designed to make 
it uncomplicated to steer a document. It also provides potential for developers to generate plug-ins on 
top of the Javasript library. This empowers developers to create abstractions for low-level interaction 
and animation, advanced effects and high-level, themeable widgets (jQuery, n.d.).

Wildfly is a free and open-source software. This is an application server authorized by JBoss and is 
currently reinforced by Red Hat. Wildfly is written in Java and executes the Java Platform, Enterprise 
Edition (Java EE) specification and also runs on numerous platforms (Wildfly, n.d.).

JavaScript library is a library of pre-written JavaScript which allows for easier development of JavaS-
cript-based applications, especially for AJAX and other web-centric technologies (JavaScript library, n.d.).

Various programming languages such as Perl, Java, Scala, C, C++, C#, Python, PHP and Ruby on 
Rails are considered commonly used languages that may have potential applications in both Chemometrics 
and Analytical Chemistry. For example, a set of Perl scripts was written to extract structural parameters 
from the x-rays in one study (Worley, 2015). In another study, Haystack, which is a web-based server 
uses the scripting languages Perl and R and a website interface powered by PHP (Grace et al., 2014). 
Some background information about these programming languages is provided below.

Perl is a popular open-source programming language. It is a scripting language consisting of a se-
quence of commands that the computer must execute and perform (Berman, 2009).

Java is an all-purpose computer language that is concurrent, class-based, object-oriented, and spe-
cifically designed to have as few implementation dependencies as possible (Gosling et. al., 2014). An 
RCDK package, a Java framework for Chemoinformatics was developed in R that provides the user with 
access to the CDK. The library allows the user to load molecules, evaluate fingerprints and calculate 
molecular descriptors (Guha, 2007).

Another all-purpose programming language is the Scala. Scala is an acronym for “Scalable Lan-
guage”. This means that Scala grows with you. You can play with it by typing one-line expressions and 
observing the results (Odersky, 2017). It has been applied in the areas of Chemometrics specifically in 
its implementation of the PLS algorithm (Dayal & MacGregor, 1997).

C, C++, C# are other programming languages that have been used in scriptwriting in Chemometrics 
(Einax, 1995). C is a powerful system programming language, and C++ is an excellent general purpose 
programming language with modern bells and whistles. C# is a programming language designed by 
Microsoft. It is based on C/C++, and bears a striking similarity with Java in numerous ways. C# aims to 
combine the high productivity of Microsoft’s Visual Basic and the raw power of C++ (Rajaram, 2007).

Python is a general-purpose, high-level programming language whose design philosophy emphasizes 
code readability (Miller & Ranum, 2014). Hypertext preprocessor (PHP), on the other hand, is a server-
side scripting language designed primarily for web development but also used as a general-purpose 
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programming language (Gosselin et. al., 2010). Lastly, Ruby on Rails is an open source framework 
developed to increase programmer productivity and reduce entry barriers to programming Web applica-
tions (Bachle & Kirchberg, 2007).

In general, Chemometrics and Analytical Chemists have a wide array of programming tools to choose 
from. The choice must depend on many factors such as the technical ability of the programming, hard-
ware and Operating System availability, User Interface options, time scale of the project and necessity 
to interface to other people’s programs (Einax, 1995).

Signal Processing in Chemometrics

Two broad questions in Chemometrics relate to detection and estimation. While detection seeks to answer 
the question of “Is a compound present?”, estimation seeks to answer “How much of the compound is 
present?” The qualitative nature of detection, and the quantitative nature of estimation have been im-
mensely aided with tools such as Spectrometry. An excellent reference to Signal Processing in Analytical 
Chemistry is in (Wentzell & Brown, 2000).

A major component of spectrometry data analysis is Signal Processing, which is accomplished through 
techniques such as Fourier Analysis and Wavelet Transforms. While Fourier Transforms are useful in 
detecting the frequencies present in a time-/frequency – series analysis, Wavelet Transforms possess 
the added advantage of determining the frequency and location of the event on the time scale. Fourier 
Transforms have been used in applications such as discrimination of cyanobacterial strains (Kansiz et. 
al., 1999) in conjunction with Fourier Transform Infrared Spectroscopy (FTIR), detection of specific 
varieties of the coffee bean in coffee samples (Briandet et. al., 1996) and many other applications as 
diverse as food spoilage (Ammor et. al., 2009), wine composition (Coimbra et. al., 2002), ivory analysis 
(Brody et. al., 2001), and bacterial sample analysis (Goodacre et. al., 2002; Kim et. al., 2005). Spectral 
signal estimation using Wavelet Transforms has been studied (Jetter et. al., 2000) and used for applications 
such as detecting moisture content in wheat samples and determining the quality of pulp in processing 
paper using Acoustic Chemometrics (Bjork, 2007). The presence of noise in these signals can be attrib-
uted to signal transfer methods, conversion from analog to digital representation, statistical errors or a 
priori baseline parameters. The effects of noise are mitigated by using techniques such as thresholding, 
filtering and temporal or spatial processing to suppress the effects of noise at specific locations in the 
signal. Improving the Signal-to-Noise Ratio (SNR) has tremendously benefited from the multi-variate 
signals obtained from chemometric tools.

Techniques such as PCA and PLS presented earlier in this chapter have for years been the primary 
methods to separate the signal from the noise. Coupled with advances in detection and estimation theory, 
statistical modeling and prediction theory using neural networks, noise and other disturbances can be 
better modeled using Fourier Transforms and Wavelet Transforms. Wavelet Transform applications in 
Chemometrics have been studied in (Tan & Brown, 2002) to obtain smoother multivariate signals with 
less background noise and to better isolate variables for process analysis in a multivariate analysis us-
ing Partial Least Squares and multiresolution analysis. Specific applications of Wavelet Transforms in 
Chemometrics have been presented in areas such as Chromatography (Daszykowski & Walczak, 2006), 
prediction of the sugar content in apples (Nicolai, Theron & Lammertyn, 2007) and detection of sweet-
eners in honey (Zhu, et. al., 2010).
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Data Storage in Chemometrics and Analytical Chemistry

The very large-scale data sets generated by statistical and mathematical tools used for analyzing chemo-
metric data is driven from the current trends in data generation. A computing revolution has facilitated 
large-scale data generation in applications as diverse as genomics, pharmaceutical applications (Singh 
et. al., 2013), Spectrometry (Marhuenda-Egea et. al., 2013), Food Quality (Cruz et. al., 2013), biologi-
cal and environmental analysis (Szefer, 2003), atmospheric precipitates (Ofner et. al., 2015), Medicinal 
Chemistry (Lusher et. al., 2014) and Toxicity (Azmi et. al., 2005). The data generated in these real-world 
applications are multi-dimensional leading to an n-dimensional data space where the data representation 
and semantics where the memory and computational power requirements might lead to the inadequacy 
of main memory to store all the data. Two different approaches to data storage have been outlined (Kan-
tardzic, 2011) to address this problem:

1. 	 Divide and Conquer: Data can be stored in secondary memory and clustering is performed on 
these subsets independently. These clusters are then merged to yield a clustering of the entire data 
set.

2. 	 Incremental Clustering: Data is stored in secondary memory and is transferred to main memory 
for clustering.

Incremental Clustering

Consider five 2-dimensional points x x x
1 2 5
, , ...,  with the following coordinates: (1,1), (0,2), (1,3), (4,1) 

and (5,0).
We apply the incremental clustering algorithm (Kantardzic, 2011) with threshold of σ = 2  to test 

for similarity within an existing cluster. A distance between points exceeding the threshold of σ = 2  
signals the creation of a new cluster with the latest data point.

Since x
1
1 1( , )  is the first sample, it is assigned to the first cluster C

1
 . The centroid of this cluster is 

calculated asP
C1

1 1= ( , )  .

The distance from the next sample x
2
0 2( , )  calculated as the Mahalanobis distance (Brereton, 2009):
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1 0 1 2 1 414= − + − = (Brereton, 2009)	
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C
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,2 1
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2
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1
.

The new value of the centroid of this cluster is then given by:

P
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1 0
2
1 2
2

0 5 0 5=
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



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For the sample x3(1,3) the distance d x P
D

( , ) ( . ) ( . ) .
3

2 21 0 5 3 1 5 1 58= − + − =  . Since d x P
C

( , )
,3 1

< σ  

the point x3 belongs to the cluster C
1
. The new value of the centroid of this cluster is given by:
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The subsequent distance calculation is d x P
C

( , ) ( . ) ( ) .
4

2 2

1
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2011)
Since d x P

C
( , )
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4
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2
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4 1= ( , ) .
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and P
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:
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5
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2
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1
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2
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2
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


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The incremental clustering approach will result in different calculations if the order of points considered 
is changed. Although not applied iteratively in this example, the incremental clustering approach may 
be used in such a manner. Also, while the above example demonstrates incremental clustering with 2-D 
data and Euclidean distance between points, it can also be applied to n-dimensional data with different 
distance metrics such as the simple matching coefficient, Jaccard Coefficient and Rao’s Coefficient. 
An analysis of Clustering Coefficients with an application in entomology is described in (Dalirsefat et. 
al., 2009).

Divide and Conquer

The Divide-and-Conquer clustering approach has been studied in (Andrews & Fox, 2007; Khalilian et. 
al., 2016) and (Cui et. al., 2014). In Khalilian, Mustapha & Sulaiman (2016), the authors present two 
approaches to data analysis in large-scale data sets. The first approach deals with algorithmic analysis 
where algorithms are used to generate clusters and test incoming samples for similarity with existing 
clusters. However, the large-scale data sets in applications such as Chemometrics cause challenges in 
insufficient data storage capacity. A second approach is that of clustering on streaming data. Thus, the 
data is not stored but is analyzed on the run. This approach called ‘’data-stream clustering’ alleviates 
data storage problems but results in unique issues related to the data such as change detection in the 
data stream, detection of gradual or abrupt changes, empty clusters resulting from monotonous data and 
expenditure of computational and time resources for generating empty clusters. The authors in (Khalilian 
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et. al., 2016) propose a modified K-Means Divide and Conquer Algorithm for data stream clustering, 
which also detects outliers, outdated micro-clusters and change in the data stream.

The general concept behind a Divide and Conquer Algorithm, which falls into the general category 
of divisible algorithms is that the data set is divided into two categories and then each category is di-
vided into two categories. This repetitive division continues until enough partitions have been created 
to result in data sets of manageable size, both in terms of storage space and computational capacity of 
the algorithms. Thus, the Divide and Conquer Algorithm works opposite to the incremental clustering 
approach described above where each data point is considered individually at the outset and is merged 
with existing clusters to form incrementally large clusters based on the threshold distance for similarity 
with a cluster. In this sense, the Divide and Conquer Algorithm may be viewed as a top-down approach 
for data storage while the Incremental Clustering Algorithm may be viewed as a bottom-up approach to 
clustering. The Incremental Clustering Algorithm is an example of agglomerative algorithm that merge 
clusters and is more frequently used in the real-world applications.

The problem of data storage and analysis of large-scale data sets requires computational tools in data 
reduction where the existing data is parsed for the most relevant information for an application. For ex-
ample, an electronic assistant such as Siri or a search engine will focus on the most relevant terms in a 
query to generate relevant search results. Consequently, search terms such as “how can I find the recipe 
to bake a cake?” and “cake recipe” are structured to achieve similar search results, yet data reduction to 
reduce the dimensionality of data can reduce the storage requirements for the first query by 80% (number 
of words in the queries). In (Andrews & Fox, 2007), the authors use a data reduction technique based on 
the K Means Divide and Conquer Algorithm. The k-Means Divide and Conquer Algorithm along with 
other clustering algorithms is described in Section 3.3.2 of this chapter by Andrews & Fox (2007), and 
the interested reader is encouraged to refer to this section for detailed analyses.

Visualization Plots, Softwares and Toolboxes Used in Chemometric Techniques

Visualization techniques exist for different areas of Chemometrics. One particular area of Chemomet-
rics that relies heavily on Visualization is multivariate analysis which attempts to make sense of high-
dimensional data. Principal Components Analysis, multidimensional scaling and factor analysis all rely 
on visualization and, to some extent or the other, aim to project high-dimensional data to lower (usually 
2-dimensional) subspaces.

Cluster analysis is another area that relies on visualization and in this section the visualization tech-
niques and software toolboxes for creating cluster plots are described.

PCA is the most commonly used technique in cluster analysis and for visualizing clusters and has been 
discussed above. Various software packages primarily available in R can perform PCA analysis such as 
prcomp, FactoMineR, cmdscale, hclust, mclust and lm. MATLAB and SAS programs can also perform 
PCA analysis using the Chemometrics Toolbox and PRINCOMP procedures respectively. R, however, 
offers a major advantage in that it is freely available. Other commercially available software tools that 
can perform PCA analysis include Eigenvector PLS Toolbox, Camo Unscrambler, Infometrix and Sym-
bion QT (Refer to Table 3). The primary visualization tools for PCA include screen plots for displaying 
eigenvalue magnitudes associated with a component and biplots for the simultaneous visualization of 
data points projected to a lower (often 2-dimensional) subspace and variables displayed as vectors.

Factor Analysis (FA) can be performed under the R Program using the FactoMineR Package. MAT-
LAB can also perform FA using its Factor Analysis Toolbox. SAS also offers a FACTOR procedure. The 
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Eigenvector PLS Toolbox is a comprehensive software system that can perform FA, PCA and Cluster-
ing. Other commercially available software tools that can also perform FA include Camo Unscrambler, 
Infometrix and Symbion QT (Refer to Table 3). The main visualization techniques for FA results include 
screen plots for displaying eigenvalue magnitudes associated with each component. These are plotted 
in descending order of size to identify the most important ones. FA can also generate factor-loading 
plots which provide a visualization for the degree of loading on each factor allowing easy comparison 
of relative loading magnitudes among a large number of factors. Vector plot of loadings can also be 
generated using FA.

In Multi-Dimensional Scaling (MDS), a scatterplot showing the projection of the data points into 
2- or 3-dimensional space, is the chief visualization tool. Any generic 2-D or 3-D plotting technique 
usually works for this purpose.

In Regression Analysis including both simple and multivariable regression methods, residual plots 
are an invaluable and standard tool for showing the residuals of the model, i.e. the difference between 
the actual values of the dependent variable and the predicted values based on the model. These types 
of plots are simple plots where the x-axis represents an independent variable and the y-axis represents 
the residual. This plot shows whether the Linear Regression model is an appropriate model for the data. 
For example, if strong non- linear relationships exist between the independent and dependent variables, 
a linear model will usually be inadequate. If the residual plot shows a random pattern around 0, this is 
usually a fairly reliable indicator that the data supports a linear model. If a strong, systematic, non-random 
pattern is seen in the residuals, then this is usually seen as evidence that the relationship between the 
independent and dependent variables is non-linear and therefore a linear model is inappropriate for this 
type of data. Regression Analysis is a commonly used method for predicting the outcome of a specific 
independent variable(s) and can be performed using various software packages under the R program, 
MATLAB and SAS statistical software (Refer Table 3).

A wide range of visualization tools exist for cluster analysis. The main tools for the 2 major types of 
Clustering (discussed below) can be performed using various software packages such as R, MATLAB, 
SAS, Eigenvector Toolbox, Camo Unscrambler, Infometrix Pirouette, Symbion QT. The MODECLUS 
procedure clusters observations in a SAS dataset using any of several algorithms based on nonparametric 
density estimates (Refer Table 3). There are two types of Clustering Techniques: Hierarchical and Non-
Hierarchical Clustering. Hierarchical Clustering utilizes dendrograms which have been briefly discussed 
and illustrated above. They are top-down tree-like diagrams used to visualize the hierarchy of clusters 
produced by clustering algorithms. They provide an easy way to examine groupings of variables that 
are deemed similar and to visualize the degrees of dissimilarity (inter-cluster distance) among variables. 
Non-Hierarchical Clustering method, on the other hand, is a category of clustering method distinguished 
from Hierarchical Clustering methods by the fact that they do not have tree like structures and often they 
work by grouping individuals rather than variables. The most popular algorithm in this class of cluster-
ing methods is the k-means algorithm which has been described previously. The main visualization tool 
used here is a simple scatterplot which allows the visualization of the resulting clusters.

CONCLUSION

Data mining and associated data storage challenges all result from a fundamental problem that probes 
for insight and hidden patterns in large data sets. Informally, the question presents itself as: What can 
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one learn from this data? The challenges of converting data to information has spurred a novel discipline 
called Data Science, or Big Data, that seeks to combine tools from Computer Science, Statistics and Ma-
chine Learning. In this chapter, the applications of Big Data to Analytical Chemistry and Chemometrics 
are analyzed and focused on five distinct chemometric aspects of large data sets: data acquisition, data 
preprocessing, data analysis, data storage and chemometric software and toolboxes. The techniques and 
algorithms presented in the chapter reinforce the idea of using tools from Computer Science, Statistics 
and Machine Learning for information retrieval and analysis challenges inherent in large-scale data sets. 
Data analyses involved in Chemometrics include an array of Regression based methods such as PLS, 
PCR and Ridge Regression methods, as well as data reduction and Pattern Recognition techniques such 
as PCA and Wavelet Transformation methods.

In order to be effective with data mining in any discipline, one would need to examine the storage 
of Big Data. Storing Big Data is no easy task as the storage needs to be able to handle large amounts 
of data and have the ability to scale upwards as more data are added to storage as time progresses. The 
storage device also needs the ability to handle receiving inputs and delivering outputs as necessary for 
storage practices or delivery of data to analytic tools respectively. Once the fundamental step of Big 
Data Storage is satisfied, the data in question can proceed to be preprocessed.

Table 3. Summary of Softwares for visualization tools used in Chemometrics (PCA=Principal Component 
Analysis, FA=Factor Analysis, MDS=Multi Dimensional Scaling)

Software
Functions/ 
Packages/ 
Libraries

PCA FA MDS Regression Clustering

R

prcomp X

FactoMineR X X

cmdscale X

hclust X

mclust X

lm, plot X

MATLAB
Chemometrics Toolbox X X X

Factor Analysis Toolbox X

SAS

FACTOR procedure X

PRINCOMP procedure X

MDS procedure X

CLUSTER, DISTANCE, 
MODECLUS procedures X

GLM procedure X

Eigenvector PLS Toolbox X X X

Camo Unscrambler X X X X X

Infometrix Pirouette X X X X

Symbion QT X X

(R Core Team, 2016; The MathWorks Inc., 2012; SAS Institute, 2011; Eigenvector Research, Inc., 2016; CAMO Software, 2016; 
Infometrix, Inc., 2016; Symbion Systems, Inc., 2016)
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Data Storage in Analytical Chemistry and Chemometrics has benefited from technological advances 
in paradigms such as MapReduce, Cloud Computing and Parallel Computing. Additional data processing 
mechanisms for efficient storage and pattern mining have been presented such as Divide and Conquer and 
Incremental Clustering to optimize storage space and computational efficiency. The diversity of tools for 
data storage and analysis presented in this chapter lend themselves readily to similar research areas in Big 
Data involving complex data types (Bioinformatics, Geographical Information Systems), Graph-based 
and Network Mining (Social Networks, Chemical Structures, Biological Pathways) and Engineering and 
Science (Software and System Engineering, Recommender Systems and Data Warehousing).

Once the data is preprocessed, it is then modeled to find any possible trends/correlations that could 
be of use. To understand the findings, the information is often visualized in the form of a graph (e.g., 
Linear Regression and Multivariable Regression) or as a Scatter plot (e.g., Clustering and Classification). 
This helps illustrate and further evaluate the possible predictions and patterns of the data that has been 
analyzed. Softwares that can visualize data range from GUI friendly software SPSS and RapidMiner to 
programs in software packages such as MATLAB and Microsoft Excel. If the software packages are not 
an option, it is possible to program in other languages such as C++, Python or Java.

FUTURE RESEARCH DIRECTIONS

As the field of data mining matures and continues to grow, we expect to see a wider range of applications 
to analytical chemistry. With analytical instruments and sensors beginning to play a more central role 
in various areas of chemistry, there is a greater awareness of the pivotal nature of data science in this 
field. For example, the Journal of Analytical Methods in Chemistry recently introduced a special issue 
called “Big Data and Data Science in Analytical Chemistry and Chemical Industry”. This issue invites 
submissions covering latest breakthroughs in data analysis methodology in analytical chemistry. Efforts 
such as this will broaden the reach of data analytic tools useful for dealing with challenges in analytical 
chemistry. Another important goal moving forward is the development of machine learning tools specifi-
cally for problems in analytical chemistry. This is a potential avenue for future research. Most statistical 
and analytical techniques used in chemometrics were originally designed for application to other fields, 
but there are certain aspects of the data generated by analytical instruments that are unique to this field. 
This requires a new breed of analytical chemists who are well-versed and comfortable in both areas, and 
can develop more powerful analytical approaches specifically tailored to analytical chemistry applica-
tions. Now, more than ever, training and educational programs in analytical chemistry need to begin 
incorporating elements of data science like statistical analysis, machine learning, and programming.
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KEY TERMS AND DEFINITIONS

Big Data Approach: An approach that involves managing Big Data from different sources or databases.
Chemometrics: A branch of Analytical Chemistry that deals with the utilization of multivariate 

statistical techniques to come up with meaningful information about the data.
Continuous Wavelet Transform: Uses inner products to measure the similarity between a signal 

and an analyzing function.
Discrete Wavelet Transform: Is an implementation of the Wavelet Transform using a discrete set 

of the wavelet scales and translations obeying some defined rules.
Factor Analysis: A process in which the values of observed data are expressed as functions of a 

number of possible causes in order to find which are the most important.
Generalized Linear Model: Is a flexible generalization of ordinary Linear Regression that allows 

for response variables that have error distribution models other than a normal distribution.
Hierarchical Cluster Analysis: Is a method of cluster analysis which seeks to build a hierarchy of 

clusters.
Linear Discriminant Analysis: Is a generalization of Fisher’s Linear Discriminant, a method used 

in Statistics, Pattern Recognition and Machine Learning to find a linear combination of features that 
characterizes or separates two or more classes of objects or events.

Process Analytical Technology: Has been defined by the United States Food and Drug Administra-
tion as a mechanism to design, analyze and control pharmaceutical manufacturing processes through the 
measurement of Critical Process Parameters which affect Critical Quality Attributes.
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Principal Component Analysis: Is a statistical procedure that uses an orthogonal transformation to 
convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated 
variables called principal components.

Principal Component Regression: Constructs new predictor variables, known as components, as 
linear combinations of the original predictor variables by creating components to explain the observed 
variability in the predictor variables, without considering the response variable at all.


